If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+w^2=20^2
We move all terms to the left:
3w^2+w^2-(20^2)=0
We add all the numbers together, and all the variables
4w^2-400=0
a = 4; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·4·(-400)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*4}=\frac{-80}{8} =-10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*4}=\frac{80}{8} =10 $
| 6x+25+x+40+8x-22=180 | | 4x+7+x=-3 | | 4/15x=2/ | | 9x-17=27-2x | | 28x+7x=9X | | t+310=942 | | 6x+25=x+40 | | 33+4x=2(−x+7)−29 | | n+0.5n-0.3n=1.2n | | 3/x=63 | | 9z−-16=34= | | 59x+62=180 | | 0.3x+7=9.7 | | 15w=2w+13 | | 6=3(m+3) | | 9z−-16=34 | | 5g2−g−1=0 | | 4(y+4=32 | | 5(8x+8)=40x-6 | | 0.50(x+328)=250 | | 124=4(i-5) | | 2x+3x+2+7=54 | | 23=u/2-13 | | 1/16(x−6)=9+x | | x/5-15=18 | | 116(x−6)=9+x | | 2x-(7x-3)=9 | | 11=u/4-8 | | -3+4=7x-2 | | a+55=4a-77 | | X^2+2x+8=10 | | (9x+5)=(7x+9) |